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Conservation of energy: 

de 'dw dq 
-=-+-dt dt dt' 

(3.3) 

Here p == I/v is material density, u is material velocity, e is specific internal energy, dw/dt is the 
rate at which work is done on unit mass, dq/dt is the rate at which heat is delivered to unit 
mass, d/dt denotes the convective derivative, n = I, 2 and 3 for plane, cylindrical and spherical 
waves, respectively. 

If the convective derivative of entropy is small immediately behind the shock front, 
equations (3.2) and (3.3) are redundant. Consider this case first and suppose that 

Px = pAv, g) (3.4) 

where g is an additional physical variable on which Px depends. It might, for example, be plastic 
strain, strain rate or electric field. Then 

(3.5) 

where a is frozen sound speed, i.e. sound speed with g = constant. Elimination of dp/dt 
between equations (3 .1) and (3.5) gives 

(3.6) 

Denote path of the shock front by x = XU) and shock velocity by R = DX/Dt. Derivative of 
any field variable I(x, t) along a path parallel to the shock front is denoted DI/Dt: 

DI = al + R al = dl + (R _ u) al 
Dt at ax dt ax (3.7) 

since dl/dt = ai/at + ual/ax. Substitution of equation (3.7) into equations (3.2) and (3.6) gives the 
following pair: 

Du _ (R _ u) au = _1. apx _ 2(n -1)1 
Dt ax p ax px 

(3.8) 

Dpx + alp au = (R _ u) apx + a dg _ pual(n -1). 
Dt aX ax dt x 

(3.9) 

Now apply equations (3.8) and (3.9) to the region just behind the discontinuity representing 
the shock. The shock jump condition which represents the equation of motion is 

Px = PoRu, (3 .10) 

where pressure in the unshocked state is assumed to be negligible and Po denotes unshocked 
mass density. Any change in shock pressure Px is accompanied by changes in Rand u: 

where 

.!.. Dpx = ..!.. DR + 1.. Du 
Px Dt R Dt u Dt 

= ~ Dpx +!!. D~ +1. Du 
R Dt R Dt u Dt 

A= aR 
apx' 

aR 
B=a[. 

(3.11) 

(3.12) 

(3.13) 
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Equation (3.12) can be used to eliminate Du/Dt from equation (3.8). The result is 

(.!! _ UA) Dpx _ (R _ u) au = uB Dg _! apx _ 2(n - I}T. 
\Px R Dt ax R Dt p ax pX 

It is now possible to eliminate au/ ax between equations (3.9) and (3.14): 

With Dg/Dt = dg/dt + (R - u) ag/ ax, equation (3.15) becomes 

where 
M = (R - u)[(R - U)2 - a1/Q, 

L = [a(R - U)2+ a2poBu]/Q, 

N = a2poBu(R - u)/Q, 

Q = (R - uf+ a2(l- poAu), 

G = a2(n -l)(px + 2'T)(R - u)/Q. 

pa2u(R - u)(n - 1) 
X 

(3.14) 

(3.15) 

(3.16) 

If Rand u depend only on Px, B == aRlag = 0, and A = dRldpx = (1- paR duldpx)Pou. Using 
the identity peR - u) = paR, we find 

1 - poAu = PoR du/dpx' (3.17) 

Divide equation (3.16) by R to obtain DpJDX. Then with g = const., a2 = c2. Set 'T = 0; use 
equation (3.10), the shock jump condition peR - /.I) = paR and equation (3.17) in equation (3.16) 
and it reduces to the Harris relation, equation (2.2). The effect of finite strength, represented by 'T, is 
to increase the rate of geometric attenuation. 

It may happen that R is very insensitive to g, so that the coefficient N vanishes, but L is still 
sensible. Then Maxwell attenuation proportional to dg/dt will exist. 

Examples 
(i) Elastic-plastic solids. In an elastic-plastic-relaxing solid, outside the yield surface, Px 

depends on both v and plastic strain, E/. If stresses are supported by elastic strains alone, and 
if plastic dilatation vanishes [10], 

Px = a 2p - 2J.LE/ 

==a2p-F (3.18) 

where a2 is independent of E/ and F is the relaxation function. With g = E/, a = -2J.L, and 
B = 0, equation (3.16) becomes 

(3.19) 

(li) Piezoelectric solids. In an axial mode piezoelectric device a plane shock is made to 
propagate in the direction of polarization and a depolarization current, J, is produced in an 
external circuit. If px is allowed to depend on both p and electric displacement, D, g in equation 
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